دانلود پاورپوینت ارزیابی فرضیه ها
مقدمه
lیک الگوریتم یادگیری با استفاده از داده های آموزشی فرضیه ای را بوجود میآورد . قبل از استفاده از این فرضیه ممکن است که لازم شود تا دقت این فرضیه مورد ارزیابی قرار گیرد.
lاینکار از دو جهت اهمیت دارد:
.1دقت فرضیه را برای مثالهای نادیده حدس بزنیم.
.2گاهی اوقات ارزیابی فرضیه جزئی از الگوریتم یادگیری است: مثل حرس کردن درخت تصمیم.
روشهای آماری
lدر این فصل سعی میشود تا روشهای آماری مناسب برای حدس زدن دقت فرضیه ها معرفی گردند. مبنای کار در جهت پاسخگوئی به سه سوال زیر است:
.1اگر دقت یک فرضیه برای داده های محدودی معلوم باشد دقت آن برای سایر مثالها چه قدر خواهد بود؟
.2اگر یک فرضیه برای داده های محدودی بهتر از فرضیه دیگری عمل کند احتمال اینکه این وضعیت در حالت کلی نیز صادق باشد چقدر است؟
.3وقتی که داده آموزشی اندکی موجود باشد بهترین راه برای اینکه هم فرضیه را یاد بگیریم و هم دقت آنرا اندازه گیری کنیم چیست؟
کمی داده های آموزشی
lوقتی که داده آموزشی محدود باشد این امکان وجود دارد که این مثالها نشان دهنده توزیع کلی داده ها نباشند
مشکل کمی داده
lوقتی که یادگیری با استفاده از داده های محدودی انجام میشود دو مشکل ممکن است رخ دهند:
.1Bias in the estimate
دقت یک فرضیه بر روی مثالهای آموزشی تخمین مناسبی برای دقت آن برای مثالهای نادیده نیست. زیرا فرضیه یاد گرفته شده بر اساس این داده ها برای مثالهای آتی بصورت optimistic عمل خواهد نمود. برای رهائی از این امر میتوان از مجموعه داده ها ی تست استفاده کرد.
.2Variance in the estimate
حتی با وجود استفاده از مجموعه تست این امکان وجود دارد که خطای اندازه گیری شده با خطای واقعی اختلاف داشته باشد
فرمت فایل: Powerpoint (قابل ویرایش) |
تعداد صفحات: 36 |
حجم: 415 کیلوبایت |