دانلود فاصله مورد نیاز ساختمان¬های با قاب خمشی فولادی، به منظور جلوگیری از برخورد در حین زلزله، باتحلیل غیر خطی به روش ارتعاشات تصادفی


دانلود پایان نامه کارشناسی ارشد عمران

فاصله مورد نیاز ساختمان­های با قاب خمشی فولادی، به منظور جلوگیری از برخورد در حین زلزله، باتحلیل غیر خطی به روش ارتعاشات تصادفی

چکیده

فاصله مورد نیاز ساختمان­های با قاب خمشی فولادی، به منظور جلوگیری از برخورد در حین زلزله، باتحلیل غیر خطی به روش ارتعاشات تصادفی

یکی از پدیده هایی که در خلال زلزله های شدید قابل رویت است برخورد بین ساختمان­های مجاور هم در نتیجه ارتعاش ناهمگون ساختمان ها می باشد. نیرویی که از برخورد بین ساختمان­ها بوجود می آید) نیروی تنه­ای(Pounding)( در طراحی در نظر گرفته نمی­شود و در نتیجه منجر به شکل گیری تغییر شکل­های پلاستیک و گسیختگی های موضعی و کلی می گردد. از مهمترین راهکارهای ارائه شده در زمینه حذف نیروی تنه ای می توان به تعبیه درز انقطاع کافی بین دو ساختمان مجاور هم، اشاره کرد. در این تحقیق فاصله مورد نیاز بین سازه های با سیستم قاب خمشی فولادی با تحلیل غیر خطی به روش ارتعاشات پیشا محاسبه شده و اثر پارامتر ها ی دینامیکی (زمان تناوب، میرایی، جرم) روی این فاصله بررسی گردید. همچنین رابطه ای برای محاسبه درز انقطاع مدل­های سازه ای مورد نظر پیشنهاد شده و نتایج حاصل از این رابطه با روابط آیین نامه های IBC2006 و استاندارد 2800 ایران مقایسه گردید.

نتایج نشان می دهند که با نزدیک شدن زمان تناوب دو سازه و همچنین افزایش میرایی، فاصله بین سازه­ها کاهش می یابد. با مقایسه درز انقطاع محاسباتی به روش ارتعاشات تصادفی در دو حالت تحلیل خطی و غیر خطی مشاهده می شود که برای مدلهای تا چهار طبقه نتایج  تحلیل خطی و غیر خطی تقریبا نزدیک به هم می باشند. ولی برای سازه های بیشتر از چهار طبقه، نتایج تحلیل خطی بیشتر از تحلیل غیر خطی می باشد و با افزایش تعداد طبقات این اختلاف بیشتر می شود. همچنین، درز انقطاع محاسباتی بر اساس استاندارد 2800 ایران برای سازه های تا 7 طبقه، کمتر و برای سازه های بیشتر از 7 طبقه، بیشتر ازمقدار بدست آمده بر اساس آیین نامه IBC2006 و روش استفاده شده در این تحقیق می باشد.

Required distance of steel bending frame buildings, to avoid pounding during earthquake by nonlinear analysis with random vibrations method

چکیده

در هنگام زلزله ساختمانهایی که نزدیک هم قرار دارند به علت تفاوت در خصوصیات دینامیکی پاسخهای متفاوتی از خود نشان می دهند و ارتعاش مشابه و هماهنگ نخواهند داشت و در نتیجه احتمال برخورد و انهدام در اثر ضربه برای این ساختمانها وجود دارد.

این پدیده برای اولین بار پس از زلزله سال 1985 مکزیکوسیتی مورد ارزیابی قرار گرفته و به عنوان یکی از عوامل تاثیر گذار بر میزان شدت خرابی های ناشی از نیروی زلزله در نظر گرفته شد. از مهمترین راهکارهای ارائه شده در زمینه کاهش نیروی تنه ای می توان به تعبیه درز انقطاع کافی بین دو ساختمان مجاور هم، اشاره کرد. در این تحقیق فاصله مورد نیاز بین سازه های با سیستم قاب خمشی فولادی با تحلیل غیر خطی به روش ارتعاشات پیشا محاسبه شده و اثر پارامتر ها ی دینامیکی (زمان تناوب، میرایی، جرم) روی این فاصله بررسی می­گردد. همچنین رابطه ای برای محاسبه درز انقطاع مدلهای سازه ای مورد نظر پیشنهاد شده و نتایج حاصل از این رابطه با روابط آیین نامه های IBC2006 و استاندارد 2800 ایران مقایسه شده است.

نتایج نشان می دهند که با نزدیک شدن زمان تناوب دو سازه و همچنین افزایش میرایی، فاصله بین سازه ها کاهش می یابد. همچنین  درز انقطاع محاسباتی  بر اساس استاندارد 2800 ایران برای سازه های تا 7 طبقه، کمتر و برای سازه های بیشتر از 7 طبقه، بیشتر ازمقدار بدست امده بر اساس آیین نامه IBC2006 و روش استفاده شده در این تحقیق می باشد.

 

 

1- مقدمه

در هنگام زلزله در اثر حرکات زمین، ساختمانها تحت نیروهای دینامیکی قرار می‌گیرند و به ارتعاش در می‌آیند. در ساخت سازهای شهری به مواردی برخورد می‌کنیم که ساختمانهای مجاور به هم چسبیده و یا با فاصله کم از یکدیگر قرار دارند. این سازه‌ها بدلیل اختلاف خواص دینامیکی در یک جهت معین دارای زمان تناوبهای مساوی نمی‌باشند. تفاوت زمان تناوب در سازه باعث اختلاف در واکنشهای آنها نسبت به شتاب زمین خواهد شد و در نتیجه با توجه به تعییر مکانهای آنها در لحظات مختلف، در طول زلزله دو سازه گاهی به هم نزدیک و گاهی از هم دور خواهد شد. و اگر فاصله دو سازه به اندازه کافی بزرگ نباشد در هنگام زلزله ممکن است با یکدیگر برخورد کرده و ضربه‌ای به همدیگر وارد نمایند برای جلوگیری از این رخداد باید فاصله بین ساختمانهای مجاور قرار داده شود تا از برخورد آنها جلوگیری گردد این فاصله را درز انقطاع گویند.

در بسیاری از زلزله‌های مهم گذشته در اکثر کلان شهرهای موجود در سراسر دنیا، بحث خرابی ناشی از نیروهای تنه‌ای مشاهده شده است. بحث نیروی تنه‌ای (Pounding) یکی از رایجترین و مرسوم ترین پدیده‌های است که در خلال زلزله‌های مهیب قابل رویت است. نیروی تنه‌ای می‌تواند باعث ایجاد خسارتهای سازه‌ای و معماری در ساختمان شده و بعضاً باعث ریزش کلی ساختمان می‌گردد.

در خلال زلزله 1985 مکزیکوسیتی حدود 15% از 330 ساختمان تحت اثر نیروی برخورد (تنه‌ای) تخریب شدند. همچنین در خلال زلزله 1989 لوماپریوتا، تا حدود 200 مورد شکل گیری نیروی تنه‌ای مشاهده گردید. در این میان حدود 79 درصد از ساختمانها دچار تخریب معماری شدند ] [.

در طی زلزله 1964 آلاسکا[1] برج هتل آنچوراگ وستوارد[2] دراثر برخورد با قسمتی از یک سالن رقص سه طبقه مجاور هتل، تخریب شد. همچنین، خرابی های ناشی از نیروی تنه ای  در زلزله های  1967 ونزوئلا [3]و 1971سانفرناندو[4] نیز مشاهده گردید] [.

 

از طرف دیگر برخورد بین عرشه ها وپایه های کناری پلها در طی زلزله 1971 سانفرناندو مشاهده شد. در سال 1995در اثر زلزله هایاکو کن نانبو[5] در ژاپن حرکت طولی المانهای پل   هان شین[6] تا 3/0متر نیز رسید. و از این زلزله به بعد تحقیقات اساسی بر روی نیروی تنه‌ای شکل گرفت] [.

 

از مهم­ترین راهکارهای ارائه شده در زمینه کاهش نیروی تنه ای می توان به تعبیه درز انقطاع کافی بین دو ساختمان مجاور هم به منظور جلوگیری از برخورد دو ساختمان، اشاره کرد. این روش از ساده ترین و در عین حال مفیدترین روشهای مرسومی است که امروزه در حیطه آیین نامه های مختلف از طریق مجموعه ضوابط خاص ارائه شده است. به منظور تخمین این فاصله جداساز روش­های مختلفی همچون روش تفاضل طیفی، روش ضرایب لاگرانژ و روش ارتعاشات پیشا وجود دارد. محققین مختلف با استفاده از یکی از روش­های ذکر شده و با فرض رفتار خطی برای دو ساختمان مجاور هم به تخمین این فاصله پرداخته اند. در این مقاله سعی شده است که درز انقطاع بین دو ساختمان با در نظر گرفتن رفتار غیر خطی اعضاء دو سازه مجاور هم، محاسبه گردد. روش مورد استفاده در این مقاله روش ارتعاشات پیشا بوده و تاثیر عواملی چون میرایی، دوره تناوب و جرم سازه ها بر درز انقطاع بررسی شده و نتایج حاصل از تحلیل با ضوابط آیین نامه ای استاندارد 2800 ایران و IBC2006 مقایسه شده است.

 

2- طراحی مدلها

مدل­های مورد استفاده در این تحقیق، شامل قاب­های با تعداد طبقات 2، 4، 6، 8، 10، 12، 14، 16، 18، 20  می‌باشند که ارتفاع طبقات در همه مدلها 2/3 متر می‌باشد. پلان طبقات تمامی ساختمان­ها مشابه می باشد. در انتخاب پلان سعی شده است که طول دهانه‌ها مطابق با ساختمان­های معمول باشد. که در این تحقیق مقدار 4 متر انتخاب شده است و همچنین شکل پلان بصورت متقارن انتخاب شده تا بتوان از اثرات پیچش ساختمان در تحلیل و طراحی   صرف­نظر کرد.

طراحی قابها بر اساس نیروهای حاصل از بارگذاری‌های ثقلی و لرزه‌ای به روش استاتیکی معادل مطابق آیین‌نامه بارگذاری استاندارد 2800 ایران انجام شده است. تحلیل و طراحی مدلها بصورت دو بعدی و با استفاده از نرم‌افزار ETABS ‌‌ صورت گرفته است. برای طراحی این قابها از آیین‌نامه‌های UBC97-ASD  و ضوابط لرزه‌ای این آیین‌نامه استفاده شده است. پارامتر‌های بکار رفته جهت محاسبه برش پایه طراحی بصورت زیر می‌باشد:

خطر لرزه‌خیزی بالا برای محل ساختمان ( ( PGA=0.35g، خاک سخت (نوع‌‌III)، ضریب اهمیت  متوسط (1‌ I =)، ضریب رفتار 10= R  (شکل‌پذیری ویژه) و ضریب اضافه مقاومت8/2=Ω.

 

فهرست مطالب

 

فصل 1 معرفی درز انقطاع و پارامترهای موثر بر آن

1-1     مقدمه

1-2   نیروی تنه ای و اهمیت آن

فصل2 مروری بر تحقیقات انجام شده

2-1 سوابق تحقیق

2-1-1 Anagnostopouls    1988

2-1-2 Westermo  1989

2-1-3  Anagnostopouls  1991

2-1-3-1 تاثیر مقاومت سازه­ای

2-1-3-2 تاثیر میرایی اعضاء

2-1-3-3 تاثیر بزرگی جرم سازه

2-1-3-4 خلاصه نتایج

2-2-4 Maision,kasai,Jeng 1992

2-1-5 Jeng,Hsiang,Lin  1997

2 -1-6 Lin و Weng 2001

2-1-7 Biego Lopez Garcia 2005

2-1-7-1 مدل خطی

2-1-7-2 مدل غیر خطی

2-1-8 فرزانه حامدی 1374

2-1-9 حسن شفائی 1385

2-1-10 نوید سیاه پلو 1387

2-2 روشهای آیین نامه ای

2-2-1 آیین نامه IBC 2006

2-2-2 آیین نامه طراحی ساختمان­ها در برابر زلزله (استاندارد2800)

فصل 3 معرفی تئوری ارتعاشات پیشا

3-1 فرایند ها و متغیر های پیشا

3-2 تعریف متغیر پیشای X

3-3 تابع چگالی احتمال

3-4 امید های آماری فرایند راندم (پیشا)

3-4-1 امید آماری مرتبه اول (میانگین) و دوم

3-5-2 واریانس و انحراف معیار فرایندهای راندم

3-5  فرایندهای مانا و ارگادیک

3-5-1 فرایند مانا

3-5-2 فرایند ارگادیک

3-6 همبستگی فرایندهای پیشا

3-7 تابع خود همبستگی

3-8 چگالی طیفی

3-9  فرایند راندم باد باریک و باند پهن

3-10  انتقال ارتعاشات راندم

3-10-1 میانگین پاسخ

3-10-2 تابع خود همبستگی پاسخ

­­­­­     3-10-3 تابع چگالی طیفی

3-10-4 جذر میانگین مربع پاسخ

3-11 روشDavenport

فصل 4 مدلسازی و نتایج تحلیل دینامیکی غیر خطی

4-1 مقدمه

4-2 روش­های مدل­سازی رفتار غیرخطی

4-3  آنالیز غیرخطی قاب های خمشی

4-4 مشخصات مدل­های مورد بررسی

4-4-1 طراحی مدل­ها

4-4-2 مدل تحلیلی

4-4-3 مشخصات مصالح

4-4-4 مدل­سازی تیر ها و ستون­ها

4-4-5 بارگذاری

 

4-5 روش آنالیز

4- 5-1 معرفی روش آنالیز تاریخچه پاسخ

4-5-1-1  انتخاب شتاب نگاشت­ها

4-5-1-2  مقیاس کردن شتاب نگاشت­ها

4-5-1-3  استهلاک رایلی

4-5-1-4 روش نیوتن­ _ رافسون

4-5-1-5 همگرایی

4-5-1-6 محاسبه پاسخ سازه ها

4-6 محاسبه درز انقطاع

4-7 تاثیر زمان تناوب دو سازه

4-8 تاثیر میرایی

4-9 تاثیر تعداد دهانه های قاب خمشی

4-10 تاثیر جرم سازه­ها

فصل 5 روش پیشنهادی برای محاسبه درز انقطاع

5-1 مقدمه

5-2 روش محاسبه جابجایی خمیری سازه ها

5-2-1 تحلیل دینامیکی طیفی

5-2-1-1 معرفی طیف بازتاب مورد استفاده در تحلیل

5-2-1-2- بارگذاری طیفی

5-2-1-3- اصلاح مقادیر بازتابها

5-2-1-4 نتایج تحلیل طیفی

5-2-2  آنالیز استاتیکی غیر خطی

5-2-2-1 محاسبه ضریب اضافه مقاومت

5-2-2-2 محاسبه ضریب شکل پذیری ( )

5-2-2-3 محاسبه ضریب کاهش مقاومت در اثر شکل پذیری

5-2-2-4 محاسبه ضریب رفتار

5-2-3  محاسبه تغییر مکان غیر الاستیک

5-2-4  محاسبه ضریب

5-3  محاسبه درز انقطاع

5-4 محاسبه جابجایی خمیری بر حسب ضریب رفتار

فصل6  مقایسه روش­های آیین نامه ای

6-1 مقدمه

6-2 آیین نامه (IBC 2006)

6-3 استاندارد 2800 ایران

6-4 مقایسه نتایج آیین نامه ها با روش استفاده شده در این تحقیق

فصل7 نتیجه گیری و پیشنهادات

7-1 جمع بندی و نتایج

7-2 روش پیشنهادی محاسبه درز انقطاع

7-3 پیشنهادات برای تحقیقات آینده

مراجع

پیوست یک: آشنایی و مدل­سازی با نرم‌افزار المان محدود  Opensees

پیوست دو: واژه نامه انگلیسی به فارس

این پایانامه به صورت فایل ورد می باشد.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *