دانلود مقاله تصویر دیجیتال


دانلود مقاله تصویر دیجیتال

تصویر دیجیتال

فصل اول:

مقدمه ای بر پردازش تصویر دیجیتال

فصل دوم :

بررسی دقیق تر برخی از روش های معرفی شده توسط سایر محققین در زمینه تشخیص صورت

فصل سوم :

تشخیص صورت بر مبنای رنگ پوست

فصل چهارم :

شناسایی صورت در یک پایگاه داده اختیاری

فصل پنجم :

روش انجام کار

منابع

 

مقدمه

پردازش تصویر دیجیتال[1] دانش جدیدی است که سابقه آن به پس از اختراع رایانه های دیجیتال باز می گردد . با این حال این علم نوپا در چند دهه اخیر از هر دو جنبه نظری و عملی پیشرفت های چشمگیری داشته است . سرعت این پیشرفت به اندازه ای بوده است که هم اکنون و پس از این مدت نسبتاً کوتاه ، به راحتی می توان رد پای پردازش تصویر دیجیتال را در بسیاری از علوم و صنایع مشاهده نمود . علاقه به روش های پردازش تصویر دیجیتال از دو محدوده کاربردی اصلی نشات می گیرد که آن محدوده ها عبارتند از : بهبود اطلاعات تصویری به منظور تعبیر انسانی و پردازش داده های صحنه برای ادراک ماشینی مستقل .

چند دسته مهم از کاربرد های پردازش تصویر به شرح زیر می باشد:

الف ) کاربردهای عکاسی مانند ارتقاء ، بازسازی تصاویر قدیمی ، بازسازی تصاویر خراب شده با نویز و بهبود ظاهر تصاویر معمولی.

ب ) کاربرد های پزشکی مانند ارتقاء ویژگی های تصاویر اشعه ایکس ، تولید تصاویر MRI  و

CT-scan.

ج ) کاربرد های امنیتی مانند تشخیص حرکت ( در دزد گیر ها ) ، تشخیص اثر انگشت ، تشخیص چهره و تشخیص امضاء.

د ) کاربرد های نظامی مانند تشخیص و رهگیری خودکار اهداف متحرک یا ثابت از هوا یا از زمین.

ه ) کاربرد های سنجش از راه دور مانند ارتقاء و تحلیل تصاویر هوایی و ماهواره ای (برداشته شده از مناطق مختلف جغرافیایی) که در کاربرد های نقشه برداری ، کشاورزی ، هوا شناسی و موارد دیگر مفید هستند .

و ) کاربرد های صنعتی مرتبط با خودکار سازی صنایع مانند تفکیک محصولات مختلف بر اساس شکل یا اندازه ، آشکارسازی نواقص و شکستگی های موجود در محصولات ، تعیین محل اشیاء و اجرای فرایند تولید با استفاده از روبات ها و بینایی ماشینی .

ز ) کاربرد های فشرده سازی تصویر مانند ذخیره سازی ، ارسال تصاویر تلویزیون با کیفیت بالا و ارسال تصاویر متحرک و زنده از روی شبکه اینترنت و یا خط تلفن.

ح ) موارد متفرقه دیگری نیز مانند تصویر برداری از اسناد و ارسال آنها توسط دور نگار و تشخیص خودکار نویسه در ردیف کاربرد های پردازش تصویر قرار دارند.

 

مراحل اساسی پردازش تصویر

پردازش تصویر دیجیتال محدوده وسیعی از سخت افزار ، نرم افراز و مبانی نظری را در بر می گیرد . در این قسمت مراحل اساسی مورد نیاز برای اجرای یک پردازش روی تصویر را نام می بریم که در شکل 1-1 نمایش داده شده است .

مرحله اول این فرایند ، تصویر برداری[2] – یعنی به دست آوردن تصویر دیجیتال –  است . انجام دادن چنین کاری نیازمند یک حسگر تصویر بردار[3] و قابلیت دیجیتال سازی سیگنال خروجی حسگر می باشد . پس از اینکه تصویر دیجیتال به دست آمد ، مرحله بعدی پیش پردازش آن است . وظیفه اصلی پیش پردازش ، بهبود تصویر به روش هایی است که امکان توفیق سایر پردازش ها را نیز افزایش دهد . پیش پردازش ، به طور معمول به روش هایی برای ارتقاء تمایز ، حذف نویز و جداسازی آن نواحی که زمینه شان نشان دهنده احتمال وجود اطلاعات حرفی –  عددی است ، می پردازد . مرحله بعدی به بخش بندی[4] می پردازد . در تعریف وسیع ، بخش بندی فرایندی است که تصویر ورودی را به قسمت ها یا اجزای تشکیل دهنده اش تقسیم می کند . به طور کلی بخش بندی یکی از مشکل ترین کارها در پردازش تصویر دیجیتال است . از طرفی یک شیوه قوی بخش بندی ، تا حد زیادی فرایند را به حل موفق مساله نزدیک می کند . از طرف دیگر الگوریتم های ضعیف یا خطا دار بخش بندی ، تقریباً  همیشه باعث خرابی اتفاقی [5]می شوند . خروجی مرحله بخش بندی معمولاً ، داده های پیکسلی خام است که یا مرز یک ناحیه یا تمام نقاط درون آن ناحیه را تشکیل می دهند . در هر دو حالت باید داده ها را به شکل مناسب برای پردازش رایانه ای تبدیل نمود . اولین تصمیمی که باید گرفته شود این است که آیا داده ها باید به صورت مرز یا به صورت یک ناحیه کامل نمایش داده شود . نمایش مرزی وقتی مفید است که مشخصات  خارجی شکل نظیر گوشه ها یا خمیدگی ها مورد نظر باشد . نمایش ناحیه ای وقتی مفید است که خواص درونی بخش های تصویر نظیر بافت یا استخوان بندی شکل مورد توجه باشد . در هر حال در بعضی کاربرد ها هر دو نمایش به کار می رود . انتخاب یک روش نمایش ، تنها قسمتی از راه تبدیل داده های خام به شکل مناسب برای پردازش بعدی رایانه ای است . توصیف[6] ، که انتخاب ویژگی[7] نیز خوانده می شود ، به استخراج ویژگی هایی که مقداری از اطلاعات کمی مورد نظر را به ما می دهند یا برای تشخیص گروهی از اشیاء از گروه دیگر ، اساسی هستنند ، می پردازد . مرحله آخر شکل 1-1 شامل تشخیص و تعبیر است . تشخیص[8] فرایندی است که بر اساس اطلاعات حاصل از توصیف گرها یک برچسب را به یک شی منتسب می کند . تعبیر[9] شامل انتساب معنا به یک مجموعه از اشیاء تشخیص داده شده است . دانش به شکل پایگاه داده دانش[10] در درون سامانه پردازش تصویر ، ذخیره می شود . این دانش ممکن است ، تنها دانستن محل نواحی دارای جزئیات مورد علاقه باشد . بنابراین جستجوی مورد نیاز برای آن اطلاعات محدود می شود . پایگاه دانش ممکن است کاملاً پیچیده باشد ، نظیر فهرست به هم مرتبط تمام نقایص اصلی ممکن در یک مساله بازرسی مواد یا یک پایگاه داده تصویری که حاوی تصاویر ماهواره ای تفکیک بالا از یک منطقه در ارتباط با کاربرد های آشکارسازی تغییر[11] باشد . پایگاه دانش علاوه بر هدایت عمل هر واحد پردازش ، بر تعامل بین واحد ها نیز نظارت می کند . این نمودار نشان می دهد که ارتباط بین واحد های پردازش اغلب براساس دانش قبلی در مورد نتیجه پردازش است . این پایگاه دانش نه تنها عمل هر واحد را هدایت می کند ، بلکه به عملیات بازخورد[12] بین واحد ها نیز کمک می کند

[1] Digital Image Processing

[2] Image acquisition

[3] Imaging sensor

[4] Segmentation

[5] Eeventual failure

[6] Description

[7] Feature selection

[8] Recognition

[9] Interpretation

[10] Knowledge base

[11] Change detection

 1-1 : مقدمه

پردازش تصویر دیجیتال[1] دانش جدیدی است که سابقه آن به پس از اختراع رایانه های دیجیتال باز می گردد . با این حال این علم نوپا در چند دهه اخیر از هر دو جنبه نظری و عملی پیشرفت های چشمگیری داشته است . سرعت این پیشرفت به اندازه ای بوده است که هم اکنون و پس از این مدت نسبتاً کوتاه ، به راحتی می توان رد پای پردازش تصویر دیجیتال را در بسیاری از علوم و صنایع مشاهده نمود . علاقه به روش های پردازش تصویر دیجیتال از دو محدوده کاربردی اصلی نشات می گیرد که آن محدوده ها عبارتند از : بهبود اطلاعات تصویری به منظور تعبیر انسانی و پردازش داده های صحنه برای ادراک ماشینی مستقل .

چند دسته مهم از کاربرد های پردازش تصویر به شرح زیر می باشد [ 1 ] :

الف ) کاربردهای عکاسی مانند ارتقاء ، بازسازی تصاویر قدیمی ، بازسازی تصاویر خراب شده با نویز و بهبود ظاهر تصاویر معمولی.

ب ) کاربرد های پزشکی مانند ارتقاء ویژگی های تصاویر اشعه ایکس ، تولید تصاویر MRI  و

CT-scan.

ج ) کاربرد های امنیتی مانند تشخیص حرکت ( در دزد گیر ها ) ، تشخیص اثر انگشت ، تشخیص چهره و تشخیص امضاء.

د ) کاربرد های نظامی مانند تشخیص و رهگیری خودکار اهداف متحرک یا ثابت از هوا یا از زمین.

ه ) کاربرد های سنجش از راه دور مانند ارتقاء و تحلیل تصاویر هوایی و ماهواره ای (برداشته شده از مناطق مختلف جغرافیایی) که در کاربرد های نقشه برداری ، کشاورزی ، هوا شناسی و موارد دیگر مفید هستند .

و ) کاربرد های صنعتی مرتبط با خودکار سازی صنایع مانند تفکیک محصولات مختلف بر اساس شکل یا اندازه ، آشکارسازی نواقص و شکستگی های موجود در محصولات ، تعیین محل اشیاء و اجرای فرایند تولید با استفاده از روبات ها و بینایی ماشینی .

ز ) کاربرد های فشرده سازی تصویر مانند ذخیره سازی ، ارسال تصاویر تلویزیون با کیفیت بالا و ارسال تصاویر متحرک و زنده از روی شبکه اینترنت و یا خط تلفن.

ح ) موارد متفرقه دیگری نیز مانند تصویر برداری از اسناد و ارسال آنها توسط دور نگار و تشخیص خودکار نویسه در ردیف کاربرد های پردازش تصویر قرار دارند.

 

 1-2 : مراحل اساسی پردازش تصویر

پردازش تصویر دیجیتال محدوده وسیعی از سخت افزار ، نرم افراز و مبانی نظری را در بر می گیرد . در این قسمت مراحل اساسی مورد نیاز برای اجرای یک پردازش روی تصویر را نام می بریم که در شکل 1-1 نمایش داده شده است .

 

شکل 1-1 : مراحل اساسی پردازش تصویر دیجیتال

 

مرحله اول این فرایند ، تصویر برداری[2] – یعنی به دست آوردن تصویر دیجیتال –  است . انجام دادن چنین کاری نیازمند یک حسگر تصویر بردار[3] و قابلیت دیجیتال سازی سیگنال خروجی حسگر می باشد . پس از اینکه تصویر دیجیتال به دست آمد ، مرحله بعدی پیش پردازش آن است . وظیفه اصلی پیش پردازش ، بهبود تصویر به روش هایی است که امکان توفیق سایر پردازش ها را نیز افزایش دهد . پیش پردازش ، به طور معمول به روش هایی برای ارتقاء تمایز ، حذف نویز و جداسازی آن نواحی که زمینه شان نشان دهنده احتمال وجود اطلاعات حرفی –  عددی است ، می پردازد . مرحله بعدی به بخش بندی[4] می پردازد . در تعریف وسیع ، بخش بندی فرایندی است که تصویر ورودی را به قسمت ها یا اجزای تشکیل دهنده اش تقسیم می کند . به طور کلی بخش بندی یکی از مشکل ترین کارها در پردازش تصویر دیجیتال است . از طرفی یک شیوه قوی بخش بندی ، تا حد زیادی فرایند را به حل موفق مساله نزدیک می کند . از طرف دیگر الگوریتم های ضعیف یا خطا دار بخش بندی ، تقریباً  همیشه باعث خرابی اتفاقی [5]می شوند . خروجی مرحله بخش بندی معمولاً ، داده های پیکسلی خام است که یا مرز یک ناحیه یا تمام نقاط درون آن ناحیه را تشکیل می دهند . در هر دو حالت باید داده ها را به شکل مناسب برای پردازش رایانه ای تبدیل نمود . اولین تصمیمی که باید گرفته شود این است که آیا داده ها باید به صورت مرز یا به صورت یک ناحیه کامل نمایش داده شود . نمایش مرزی وقتی مفید است که مشخصات  خارجی شکل نظیر گوشه ها یا خمیدگی ها مورد نظر باشد . نمایش ناحیه ای وقتی مفید است که خواص درونی بخش های تصویر نظیر بافت یا استخوان بندی شکل مورد توجه باشد . در هر حال در بعضی کاربرد ها هر دو نمایش به کار می رود . انتخاب یک روش نمایش ، تنها قسمتی از راه تبدیل داده های خام به شکل مناسب برای پردازش بعدی رایانه ای است . توصیف[6] ، که انتخاب ویژگی[7] نیز خوانده می شود ، به استخراج ویژگی هایی که مقداری از اطلاعات کمی مورد نظر را به ما می دهند یا برای تشخیص گروهی از اشیاء از گروه دیگر ، اساسی هستنند ، می پردازد . مرحله آخر شکل 1-1 شامل تشخیص و تعبیر است . تشخیص[8] فرایندی است که بر اساس اطلاعات حاصل از توصیف گرها یک برچسب را به یک شی منتسب می کند . تعبیر[9] شامل انتساب معنا به یک مجموعه از اشیاء تشخیص داده شده است . دانش به شکل پایگاه داده دانش[10] در درون سامانه پردازش تصویر ، ذخیره می شود . این دانش ممکن است ، تنها دانستن محل نواحی دارای جزئیات مورد علاقه باشد . بنابراین جستجوی مورد نیاز برای آن اطلاعات محدود می شود . پایگاه دانش ممکن است کاملاً پیچیده باشد ، نظیر فهرست به هم مرتبط تمام نقایص اصلی ممکن در یک مساله بازرسی مواد یا یک پایگاه داده تصویری که حاوی تصاویر ماهواره ای تفکیک بالا از یک منطقه در ارتباط با کاربرد های آشکارسازی تغییر[11] باشد . پایگاه دانش علاوه بر هدایت عمل هر واحد پردازش ، بر تعامل بین واحد ها نیز نظارت می کند . این نمودار نشان می دهد که ارتباط بین واحد های پردازش اغلب براساس دانش قبلی در مورد نتیجه پردازش است . این پایگاه دانش نه تنها عمل هر واحد را هدایت می کند ، بلکه به عملیات بازخورد[12] بین واحد ها نیز کمک می کند [1].

[1] Digital Image Processing

[2] Image acquisition

[3] Imaging sensor

[4] Segmentation

[5] Eeventual failure

[6] Description

[7] Feature selection

[8] Recognition

[9] Interpretation

[10] Knowledge base

[11] Change detection

[12] Feed back

فرمت فایل: Word (قابل ویرایش)
تعداد صفحات: 130
حجم:10.2 مگابایت

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *