مقاله انگلیسی در مورد پاسخ دریفت لرزه ای سازه های فولادی با مهاربند الاکلنگی و کمانش ناپذیر


مقاله انگلیسی در مورد پاسخ دریفت لرزه ای سازه های فولادی با مهاربند الاکلنگی و کمانش ناپذیر

مشخصات مقاله
ترجمه عنوان مقاله پاسخ دریفت لرزه ای سازه های فولادی با مهاربند الاکلنگی و کمانش ناپذیر: یک مطالعه مقایسه ای
عنوان انگلیسی مقاله Seismic drift response of seesaw-braced and buckling-restrained braced steel structures: A comparison study
انتشار مقاله سال ۲۰۲۰
تعداد صفحات مقاله انگلیسی ۲۵ صفحه
هزینه
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۲٫۹۸۹ در سال ۲۰۱۹
شاخص H_index ۷۸ در سال ۲۰۲۰
شاخص SJR ۱٫۳۵۹ در سال ۲۰۱۹
شناسه ISSN ۰۲۶۷-۷۲۶۱
شاخص Quartile (چارک) Q1 در سال ۲۰۱۹
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی عمران
گرایش های مرتبط سازه، زلزله
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دینامیک خاک و مهندسی زلزله – Soil Dynamics and Earthquake Engineering
دانشگاه   University of Patras, Greece
کلمات کلیدی سیستم الاکلنگی، مهاربندهای کمانش ناپذیر، سازه های فولادی، دریفت های لرزه ای، تعامل ساختار خاک، زاویه انتشار لرزه ای
کلمات کلیدی انگلیسی Seesaw system, Buckling-restrained braces, Steel structures, Seismic drifts, Soil-structure interaction, Angle of seismic incidence
شناسه دیجیتال – doi
https://doi.org/10.1016/j.soildyn.2019.105925
فهرست مطالب مقاله:
Abstract۱٫ Introduction

۲٫ Seismic analysis of 3-D steel structures

۳٫ Seismic response results

۴٫ Synopsis and conclusions

Acknowledgement

Appendix A. Supplementary data

Research Data

References

بخشی از متن مقاله:
Abstract

A numerical comparison study of the interstorey and the residual interstorey seismic drifts of steel structures equipped with the seesaw system and buckling-restrained braces is carried out. This investigation involves inelastic time-history seismic analyses of 2-, 5- and 8-storey 3-D steel structures, with specific orientation of columns and configuration of braces, for the design basis earthquake. The effects of soil-structure interaction and seismic incident angle are also considered in these analyses. Comparison of the seismic drift responses experienced by the seesaw-braced and the buckling-restrained braced steel structures, reveals different peak interstorey drift values but in many cases similar drift concentration along the height of the structures. Furthermore, the seesaw-braced steel structures exhibit, in general, larger peak residual drifts than buckling-restrained braced steel structures.

Introduction

After a major seismic event, the integrity of a structure, e.g. its capacity for immediate occupancy, should be certified via the explicit consideration of seismic response indexes such as the peak drifts. Focusing on steel structures, several studies, e.g. Ref. [1], have demonstrated the necessity to consider residual (permanent) drifts after an earthquake. Residual drifts, i.e. permanent drifts caused by yielding, permit the evaluation of the seismic performance of a steel structure regarding deformation and damage to its elements. In regions where repeated earthquakes can take place in a short period of time, the occurrence of a second or a third earthquake (not necessarily aftershocks of the first earthquake), increases the collapse risk of a steel structure if its residual drifts are significant [2]. The importance of residual drift has been also recognized as a key design parameter of novel seismic force resisting systems for steel structures, e.g., Refs. [3,4]. The limit value of 0.5% for residual drifts has been established as the threshold beyond which any repair of a structure is unfeasible in comparison to its rebuilding [5].

Over the past 20 years, buckling-restrained braces (BRBs) have shown an increased popularity in China, Japan, Taiwan, United States and other countries, as a primary force-resisting system for steel structures [6]. More recently, BRBs have also been applied for the seismic retrofit of older non-ductile structures [7]. BRBs, due to their stable and symmetric cyclic hysteretic response, have the advantage of developing full plastic strength in both tension and compression, providing, thus, significant energy dissipation and ductility without exhibiting strength degradation. The main disadvantage associated with BRBs is their tendency to cause storey drift concentration, i.e. accumulation of significant storey drifts in a few storeys without a more or less “uniform” distribution along the height of a structure, which inevitably leads to large residual storey drifts [8].

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *