مشخصات مقاله | |
ترجمه عنوان مقاله | بهبود نقشه های بارش رادار آب و هوا: یک رویکرد منطق فازی |
عنوان انگلیسی مقاله | Improving weather radar precipitation maps: A fuzzy logic approach |
انتشار | مقاله سال ۲۰۲۰ |
تعداد صفحات مقاله انگلیسی | ۱۵ صفحه |
هزینه | |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۴٫۴۱۳ در سال ۲۰۱۹ |
شاخص H_index | ۸۵ در سال ۲۰۲۰ |
شاخص SJR | ۱٫۴۶۴ در سال ۲۰۱۹ |
شناسه ISSN | ۰۱۶۹-۸۰۹۵ |
شاخص Quartile (چارک) | Q1 در سال ۲۰۱۹ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | جغرافیا، فیزیک |
گرایش های مرتبط | آب و هواشناسی، مخاطرات آب و هوایی، تغییرات آب و هوایی اقلیمی، سنجش از دور و سیستم اطلاعات جغرافیایی |
نوع ارائه مقاله |
ژورنال |
مجله | تحقیقات جوی – Atmospheric Research |
دانشگاه | Dept. of Geography and Environmental Development and Dept. of Psychology, Ben Gurion University, Israel |
کلمات کلیدی | منطق فازی، بارش، مقیاس، رادار هوا، مبتنی بر موقعیت مکانی |
کلمات کلیدی انگلیسی | Fuzzy logic، Precipitation، Gauges، Weather radar، Location-based |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.atmosres.2019.104710 |
فهرست مطالب مقاله: |
Abstract۱- Introduction
۲- Methodology ۳- Results ۴- Discussion ۵- Conclusion References |
بخشی از متن مقاله: |
Abstract
Weather radar can provide spatially explicit precipitation grids. However interference, ground clutter and various causes of attenuation introduce uncertainty into the result. Typically, rain gauge observations, recognized as a precise measure of precipitation at point locations, are used to adjust weather radar grids to obtain more accurate precipitation maps. This adjustment involves one or more of various geostatistic techniques. Yet, since gauges are sparsely located, a geostatistic approach is sometimes limited or even not applicable. Background Estimating spatially distributed precipitation grids is a prerequisite to flood management and flood forecasting (Merz et al. (2014)). Hydrological models need basin-scale, spatially explicit precipitation data, among other inputs, to construct accurate flood forecasts (Todini et al. (2005)) for surface runoff management. Rain radar can produce such spatial precipitation distributions, however the challenges in calibrating and correcting for the various sources of error (detailed in Villarini et al. (2008)) create spatial and temporal uncertainty in the precipitation distribution (Cecinati et al. (2017), Krajewski and Smith, 2002). Nevertheless, the underlying motivation for research in improving precipitation maps rests in the needs of hydrological modeling and flood forecasting. Since weather radar became an accepted source of spatially distributed rainfall (Krajewski and Smith (2002), Morin et al. (2003)), extensive research has examined adjustment procedures to merge rain gauge observations with weather radar. Gauge data are accepted as reference observations (see for example Colli et al. (2013)), but represent point locations. Such point data can adjust weather radar grids through several geostatistic methods, reviewed and evaluated by Goovaerts (2000), Berndt et al. (2014) and McKee and Binns (2016). Kriging based methods have been examined by Kebaili Bargaoui and Chebbi (2009), Adhikary et al. (2017), and Ly et al. (2013). A comparison of various kriging methods where elevation was the secondary variable was done by Carrera-Hernández and Gaskin (2007). Another unique algorithm known as Conditional Merging, developed and evaluated by Sinclair and Pegram (2005), applies multiple kriging steps to achieve successful adjustment (Kim et al. (2007)) of weather radar grids. |